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MonoSLAM: Real-Time Single Camera SLAM
Andrew J. Davison, Ian D. Reid, Nicholas D. Molton and Olivier Stasse

Abstract

We present a real-time algorithm which can recover the 3D trajectory of a monocular camera, moving rapidly
through a previously unknown scene. Our system, which we dub MonoSLAM, is the first successful application of
the SLAM methodology from mobile robotics to the ‘pure vision’ domain of a single uncontrolled camera, achieving
real-time but drift-free performance inaccessible to Structure from Motion approaches. The core of the approach is
the on-line creation of a sparse but persistent map of natural landmarks within a probabilistic framework. Our key
novel contributions include an active approach to mapping and measurement, the use of a general motion model
for smooth camera movement, and solutions for monocular feature initialization and feature orientation estimation.
Together, these add up to an extremely efficient and robust algorithm which runs at 30Hz with standard PC and
camera hardware.

This work extends the range of robotic systems in which SLAM can be usefully applied, but also opens up
new areas. We present applications of MonoSLAM to real-time 3D localization and mapping for a high-performance
full-size humanoid robot, and live augmented reality with a hand-held camera.

Index Terms

I.2.9.a Autonomous vehicles, I.2.10.a 3D/stereo scene analysis, I.4.8.n Tracking

I. INTRODUCTION

The last ten years have seen significant progress in autonomous robot navigation, and specifically
SLAM (Simultaneous Localization and Mapping) has become well defined in the robotics community
as the question of a moving sensor platform constructing a representation of its environment on the fly
while concurrently estimating its ego-motion. SLAM is today is routinely achieved in experimental robot
systems using modern methods of sequential Bayesian inference, and SLAM algorithms are now starting
to cross over into practical systems. Interestingly however, and despite the large computer vision research
community, until very recently the use of cameras has not been at the center of progress in robot SLAM,
with much more attention given to other sensors such as laser range-finders and sonar.

This may seem surprising since for many reasons vision is an attractive choice of SLAM sensor: cameras
are compact, accurate, non-invasive and well-understood — and today cheap and ubiquitous. Vision of
course also has great intuitive appeal as the sense humans and animals primarily use to navigate. However,
cameras capture the world’s geometry only indirectly through photometric effects, and it was thought too
difficult to turn the sparse sets of features popping out of an image into reliable long-term maps generated
in real-time, particularly since the data rates coming from a camera are so much higher than those from
other sensors.

Instead, vision researchers concentrated on reconstruction problems from small image sets, developing
the field known as Structure from Motion (SFM). SFM algorithms have been extended to work on
longer image sequences, (e.g. [1]–[3]), but these systems are fundamentally off-line in nature, analyzing
a complete image sequence to produce a reconstruction of the camera trajectory and scene structure
observed. To obtain globally consistent estimates over a sequence, local motion estimates from frame-to-
frame feature matching are refined in a global optimization moving backwards and forwards through the
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whole sequence (called bundle adjustment). These methods are perfectly suited to the automatic analysis of
short image sequences obtained from arbitrary sources — movie shots, consumer video or even decades-old
archive footage — but do not scale to consistent localization over arbitrarily long sequences in real-time.

Our work is highly focused on high frame-rate real-time performance (typically 30Hz) as a requirement.
In applications, real-time algorithms are necessary only if they are to be used as part of a loop involving
other components in the dynamic world — a robot that must control its next motion step, a human that
needs visual feedback on his actions or another computational process which is waiting for input. In these
cases, the most immediately useful information to be obtained from a moving camera in real-time is where
it is, rather than a fully detailed ‘final result’ map of a scene ready for display. Although localization and
mapping are intricately coupled problems, and it has been proven in SLAM research that solving either
requires solving both, in this work we focus on localization as the main output of interest. A map is
certainly built, but it is a sparse map of landmarks optimized towards enabling localization.

Further, real-time camera tracking scenarios will often involve extended and looping motions within a
restricted environment (as a humanoid performs a task, a domestic robot cleans a home, or room is viewed
from different angles with graphical augmentations). Repeatable localization, in which gradual drift from
ground truth does not occur, will be essential here, and much more important than in cases where a
moving camera continually explores new regions without returning. This is where our fully-probabilistic
SLAM approach comes into its own: it will naturally construct a persistent map of scene landmarks to
be referenced indefinitely in a state-based framework, and permit loop closures to correct long-term drift.
Forming a persistent world map means that if camera motion is restricted, the processing requirement
of the algorithm is bounded and continuous real-time operation can be maintained, unlike in tracking
approaches such as [4] where loop-closing corrections are achieved by matching to a growing history of
past poses.

A. Contributions of this Paper
Our key contribution is to show that it is indeed possible to achieve real-time localization and mapping

with a single freely moving camera as the only data source. We achieve this by applying the core of
the probabilistic SLAM methodology with novel insights specific to what here is a particularly difficult
SLAM scenario. The MonoSLAM algorithm we explain and demonstrate achieves the efficiency required
for real-time operation by using an active, guided approach to feature mapping and measurement, a general
motion model for smooth 3D camera movement to capture the dynamical prior information inherent in a
continuous video stream, and a novel top-down solution to the problem of monocular feature initialization.

In a nutshell, when compared to SFM approaches to sequence analysis, using SLAM we are able
both to implement on-the-fly probabilistic estimation of the state of the moving camera and its map, and
benefit from this in using the running estimates to guide efficient processing. This aspect of SLAM is
often overlooked. Sequential SLAM is very naturally able for instance to select a set of highly salient and
trackable but efficiently spaced features to put into its visual map, with the use of only simple mapping
heuristics. Sensible confidence bound assumptions allow all but the most important image processing to
be avoided, and at high frame-rates all but tiny search regions of incoming images are completely ignored
by our algorithm. Our approach to mapping can be summarized as ‘a sparse map of high quality features’.

We are able in this paper to demonstrate real-time MonoSLAM indoors in room-sized domains. A long
term goal in SLAM shared by many would be to achieve a system with the following performance: a
single low-cost camera attached to a portable computer would be switched on at an arbitrary location
in an unknown scene, then carried off by a fast-moving robot (perhaps flying, or jumping) or even a
running human through an arbitrarily large domain, all the time effortlessly recovering its trajectory in
real-time and building a detailed, persistent map of all it has seen. While others attack the large map
issue, but continue to work with the same slow-moving robots and multi-sensor platforms as before,
we are approaching the problem from the other direction and solve issues relating to highly dynamic
3D motion, commodity vision-only sensing, processing efficiency and relaxing platform assumptions. We
believe that our results are of both theoretical and practical importance because they open up completely
new avenues for the application of SLAM techniques.
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The current paper draws on earlier work published in conference papers [5]–[7]. We also present new
unpublished results demonstrating the advanced use of the algorithm in humanoid robotics and augmented
reality applications.

II. RELATED WORK

The work of Harris and Pike [8], whose DROID system built visual maps sequentially using input from
a single camera, is perhaps the grandfather of our research and was far ahead of its time. Impressive
results showed 3D maps of features from long image sequences, and a later real-time implementation was
achieved. A serious oversight of this work, however, was the treatment of the locations of each of the
mapped visual features as uncoupled estimation problems, neglecting the strong correlations introduced by
the common camera motion. Closely-related approaches were presented by Ayache [9] and later Beardsley
et al. [10] in an uncalibrated geometrical framework, but these approaches also neglected correlations, the
result being over-confident mapping and localization estimates and an inability to close loops and correct
drift.

Smith et al. [11] and at a similar time Moutarlier and Chatila [12] had proposed taking account of all
correlations in general robot localization and mapping problems within a single state vector and covariance
matrix updated by the Extended Kalman Filter (EKF). Work by Leonard [13], Manyika [14] and others
demonstrated increasingly sophisticated robot mapping and localization using related EKF techniques,
but the single state vector and ‘full covariance’ approach of Smith et al. did not receive widespread
attention until the mid to late nineties, perhaps when computing power reached the point where it could
be practically tested. Several early implementations [15]–[19] proved the single EKF approach for building
modest-sized maps in real robot systems, and demonstrated convincingly the importance of maintaining
estimate correlations. These successes gradually saw very widespread adoption of the EKF as the core
estimation technique in SLAM, and its generality as a Bayesian solution was understood across a variety
of different platforms and sensors.

In the intervening years, SLAM systems based on the EKF and related probabilistic filters have
demonstrated impressive results in varied domains. The methods deviating from the standard EKF have
mainly aimed at building large scale maps, where the EKF suffers problems of computational complexity
and inaccuracy due to linearization, and have included sub-mapping strategies (e.g. [20], [21]) and
factorized particle filtering (e.g. [22]). The most impressive results in terms of mapping accuracy and
scale have come from robots using laser range-finder sensors. These directly return accurate range and
bearing scans over a slice of the nearby scene, which can either be processed to extract repeatable features
to insert into a map (e.g. [23]) or simply matched whole-scale with other overlapping scans to accurately
measure robot displacement and build a map of historic robot locations each with a local scan reference
(e.g. [24], [25]).

A. Vision-Based SLAM
Our algorithm uses vision as the only outward-looking sense. In the introduction we mentioned the

additional challenges posed by vision over laser sensors, which include the very high input data rate, the
inherent 3D quality of visual data, the lack of direct depth measurement and the difficulty in extracting
long-term features to map. These factors have combined to mean that there have been relatively few
successful vision-only SLAM systems (where now we define a SLAM system as one able to construct
persistent maps on the fly while closing loops to correct drift). In this section we review some of the
most interesting and place our work into context.

Neira et al. presented a simple system mapping vertical line segments in 2D in a constrained indoor
environment [26], but the direct ancestor of the approach in the current paper was the work by Davison
and Murray [18], [27], [28] whose system using fixating active stereo was the first visual SLAM system
with processing in real-time (at 5Hz), able to build a 3D map of natural landmarks on the fly and control a
mobile robot. The robotic active head that was used forced a one-by-one choice of feature measurements
and sparse mapping. Nevertheless, it was proved that a small set of landmarks could provide a very
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accurate SLAM reference if carefully chosen and spread. Davison and Kita [29] extended this method to
the case of a robot able to localize while traversing non-planar ramps by combining stereo vision with
an inclinometer.

In more recent work, vision-based SLAM has been used in a range of different systems. Jung and
Lacroix [30] presented a stereo vision SLAM system using a downward-looking stereo rig to localize
a robotic airship and perform terrain mapping. Their implementation was sequential but did not run in
real-time and relied on a wide baseline fixed stereo rig to obtain depth measurements directly. Kim and
Sukkarieh [31] used monocular vision in combination with accurate inertial sensing to map ground-based
targets from a dynamically maneuvering UAV in an impressive system, though the targets were artificially
placed and estimation of their locations is made easier by the fact that they can be assumed to lie in a
plane.

Bosse et al. [20], [32] used omnidirectional vision in combination with other sensors in their ATLAS
sub-mapping framework, making particular use of lines in a man-made environment as consistent bearing
references. Most recently Eustice et al. [33] have used a single downward-looking camera and inertial
sensing to localize an underwater remote vehicle and produce detailed seabed reconstructions from low
frame-rate image sequences. Using an efficient sparse information filter their approach scales well to
large-scale mapping in their experimental setup where loop closures are relatively infrequent.

Recently published work by Sim et al. [34] uses an algorithm combining SIFT features [35] and
FastSLAM filtering [22] to achieve particularly large-scale vision-only SLAM mapping. Their method
is processor-intensive, and at an average of 10 seconds processing time per frame is currently a large
factor away from real-time operation. The commercial vSLAM system [36] also uses SIFT features,
though within a SLAM algorithm which relies significantly on odometry to build a connected map of
recognizable locations rather than fully continuous accurate localization. There is little doubt that invariant
features such as SIFT provide a high level of performance in matching, and permit high fidelity ‘location
recognition’ in the same way as they were designed for use in visual object recognition. Their value in
loop-closing or for localizing a ‘lost robot’, which involve matching with very weak priors, is clear. They
are less suited to continuous tracking, however, due to the high computational cost of extracting them —
a method like ours using active search will always outperform invariant matching for speed.

A stress of our work is to simplify the hardware required for SLAM to the simplest case possible, a
single camera connected to a computer, and to require a minimum of assumptions about this camera’s
free 3D movement. Several authors have presented real-time camera tracking systems with goals similar
to our own. McLauchlan and Murray [37] introduced the VSDF (Variable State-Dimension Filter) for
simultaneous structure and motion recovery from a moving camera using a sparse information filter
framework, but were not able to demonstrate long-term tracking or loop closing. The approach of Chiuso
et al. [38] shared several of the ideas of our work, including the propagation of map and localization
uncertainty using a single Extended Kalman Filter, but only limited results of tracking small groups of
objects with small camera motions were presented. Their method used simple gradient descent feature
tracking and was therefore unable to match features during high acceleration or close loops after periods
of neglect. Nistér [39] presented a real-time system based very much on the standard structure from
motion methodology of frame-to-frame matching of large numbers of point features which was able to
recover instantaneous motions impressively but again had no ability to re-recognize features after periods
of neglect and therefore would lead inevitably to rapid drift in augmented reality or localization. Foxlin
[40] has taken a different approach in a single camera system by using fiducial markers attached to
the ceiling in combination with high-performance inertial sensing. This system achieved very impressive
and repeatable localization results but with the requirement for substantial extra infrastructure and cost.
Burschka and Hager [41] demonstrated a small-scale visual localization and mapping system, though by
separating the localization and mapping steps they neglect estimate correlations and the ability of this
method to function over long time periods is doubtful.

In the following section we will present our method step by step in a form accessible to readers
unfamiliar with the details of previous SLAM approaches.



5

(a) (b)

Fig. 1. (a) A snapshot of the probabilistic 3D map, showing camera position estimate and feature position uncertainty ellipsoids. In this
and other figures in the paper the feature color code is as follows: red = successfully measured; blue = attempted but failed measurement;
yellow = not selected for measurement on this step. (b) Visually salient feature patches detected to serve as visual landmarks and the 3D
planar regions deduced by back-projection to their estimated world locations. These planar regions are projected into future estimated camera
positions to predict patch appearance from new viewpoints.

III. METHOD

A. Probabilistic 3D Map
The key concept of our approach, as in [11], is a probabilistic feature-based map, representing at any

instant a snapshot of the current estimates of the state of the camera and all features of interest, and
crucially also the uncertainty in these estimates. The map is initialized at system start-up and persists
until operation ends, but evolves continuously and dynamically as it is updated by the Extended Kalman
Filter. The probabilistic state estimates of the camera and features are updated during camera motion and
feature observation. When new features are observed the map is enlarged with new states, and if necessary
features can also be deleted.

The probabilistic character of the map lies in the propagation over time not only of the mean ‘best’
estimates of the states of the camera and features but a first order uncertainty distribution describing the
size of possible deviations from these values. Mathematically, the map is represented by a state vector
x̂ and covariance matrix P. State vector x̂ is composed of the stacked state estimates of the camera and
features, and P is a square matrix of equal dimension which can be partitioned into sub-matrix elements
as follows:

x̂ =




x̂v

ŷ1

ŷ2
...


 , P =




Pxx Pxy1 Pxy2 . . .
Py1x Py1y1 Py1y2 . . .
Py2x Py2y1 Py2y2 . . .

...
...

...


 . (1)

In doing this the probability distribution over all map parameters is approximated as a single multi-variate
Gaussian distribution in a space of dimension equal to the total state vector size.

Explicitly, the camera’s state vector xv comprises a metric 3D position vector rW , orientation quaternion
qRW , velocity vector vW and angular velocity vector ωR relative to a fixed world frame W and ‘robot’
frame R carried by the camera (13 parameters):

xv =




rW

qWR

vW

ωR


 . (2)

In this work feature states yi are the 3D position vectors of the locations of point features. Camera and
feature geometry and coordinate frames are defined in Figure 3(a).

The role of the map is primarily to permit real-time localization rather than serve as a complete scene
description, and we therefore aim to capture a sparse set of high-quality landmarks. We assume that the
scene is rigid and that each landmark is a stationary world feature. Specifically in this work each landmark
is assumed to correspond to a well-localized point feature in 3D space. The camera is modeled as a rigid
body needing translation and rotation parameters to describe its position, and we also maintain estimates
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of its linear and angular velocity: this is important in our algorithm since we will make use of motion
dynamics as will be explained in Section III-D.

The map can be pictured as in Figure 1(a): all geometric estimates can be considered as surrounded by
ellipsoidal regions representing uncertainty bounds (here corresponding to 3 standard deviations). What
Figure 1(a) cannot show is that the various ellipsoids are potentially correlated to various degrees: in
sequential mapping, a situation which commonly occurs is that spatially close features which are often
observed simultaneously by the camera will have position estimates whose difference (relative position)
is very well known while the position of the group as a whole relative to the global coordinate frame may
not be. This situation is represented in the map covariance matrix P by non-zero entries in the off-diagonal
matrix blocks, and comes about naturally through the operation of the algorithm.

The total size of the map representation is order O(N2) where N is the number of features, and the
complete SLAM algorithm we use has O(N2) complexity. This means that the number of features which
can be maintained with real-time processing is bounded — in our system to around 100 in current 30Hz
implementation.

There are strong reasons why we have chosen in this work to use the ‘standard’ single, full covariance
EKF approach to SLAM rather than variants which use different probabilistic representations. As we have
stated, our current goal is long-term, repeatable localization within restricted volumes. The pattern of
observation of features in one of our maps is quite different from that seen in many other implementations
of SLAM for robot mapping, such as [25], [34] or [22]. Those robots move largely through corridor-like
topologies, following exploratory paths until they infrequently come back to places they have seen before,
at that stage correcting drift around loops. Relatively ad-hoc approaches can be taken to distributing
the correction around the well-defined loops, whether this is through a chain of uncertain pose-to-pose
transformations or sub-maps, or by selecting from a potentially impoverished discrete set of trajectory
hypotheses represented by a finite number of particles.

In our case, as a free camera moves and rotates in 3D around a restricted space, individual features will
come in and out of the field of view in varying sequences, various subsets of features at different depths
will be co-visible as the camera rotates, and loops of many different sizes and inter-linking patterns will
be routinely closed. We have considered it very important to represent the detailed, flexible correlations
which will arise between different parts of the map accurately. Within the class of known methods, this
is only computationally feasible with a sparse map of features maintained within a single state vector and
covariance matrix. 100 well-chosen features turns out to be sufficient with careful map management to
span a room. In our opinion, it remains to be proven whether a method (for instance FastSLAM [22],
[42]) which can cope with a much larger number of features but represent correlations less accurately
will be able to give such good repeatable localization results in agile single camera SLAM.

B. Natural Visual Landmarks
Now we turn specifically to the features which make up the map. We have followed the approach

of Davison and Murray [5], [27], who showed that relatively large (11×11 pixels) image patches are
able to serve as long-term landmark features, the large templates having more unique signatures than
standard corner features. However we extend the power of such features significantly by using the camera
localization information we have available to improve matching over large camera displacements and
rotations.

Salient image regions are originally detected automatically (at times and in locations guided by the
strategies of Section III-G) using the detection operator of Shi and Tomasi [43] from the monochrome
images obtained from the camera (note that in the current work we use monochrome images primarily for
reasons of efficiency). The goal is to be able to identify these same visual landmarks repeatedly during
potentially extreme camera motions, and therefore straightforward 2D template matching (as in [5]) is
very limiting, as after only small degrees of camera rotation and translation the appearance of a landmark
can change greatly. To improve on this, we make the approximation that each landmark lies on a locally
planar surface — an approximation that will be very good in many cases and bad in others, but a great
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(a) (b)

Fig. 2. (a) Matching the four known features of the initialization target on the first frame of tracking. The large circular search regions
reflect the high uncertainty assigned to the starting camera position estimate. (b) Visualization of the model for ‘smooth’ motion: at each
camera position we predict a most likely path together with alternatives with small deviations.

deal better than assuming that the appearance of the patch will not change at all. Further, since we do
not know the orientation of this surface, we make the assignment that the surface normal is parallel to
the vector from the feature to the camera at initialization (in Section III-H we will present a method
for updating estimates of this normal direction). Once the 3D location, including depth, of a feature
has been fully initialized using the method of Section III-F, each feature is stored as an oriented planar
texture (Figure 1(b)). When making measurements of a feature from new camera positions, its patch can
be projected from 3D to the image plane to produce a template for matching with the real image. This
template will be a warped version of the original square template captured when the feature was first
detected. In general this will be a full projective warping, with shearing and perspective distortion, since
we just send the template through backward and forward camera models. Even if the orientation of the
surface on which the feature lies is not correct, the warping will still take care successfully of rotation
about the cyclotorsion axis and scale (the degrees of freedom to which the SIFT descriptor is invariant)
and some amount of other warping.

Note that we do not update the saved templates for features over time — since the goal is repeatable
localization, we need the ability to exactly re-measure the locations of features over arbitrarily long time
periods. Templates which are updated over time will tend to drift gradually from their initial positions.

C. System Initialization
In most SLAM systems, the robot has no specific knowledge about the structure of the world around

it when first switched on. It is free to define a coordinate frame within which to estimate its motion and
build a map, and the obvious choice is to fix this frame at the robot’s starting position, defined as the
origin. In our single camera SLAM algorithm we choose to aid system start-up with a small amount of
prior information about the scene in the shape of a known target placed in front of the camera. This
provides several features (typically four) with known positions and of known appearance. There are two
main reasons for this:

1) In single camera SLAM, with no direct way to measure feature depths or any odometry, starting
from a target of known size allows us to assign a precise scale to the estimated map and motion
— rather than running with scale as a completely unknown degree of freedom. Knowing the scale
of the map is desirable whenever it must be related to other information such as priors on motion
dynamics or features depths, and makes it much more easy to use in real applications.

2) Having some features in the map right from the start means that we can immediately enter our
normal predict-measure-update tracking sequence without any special first step. With a single
camera, features cannot be initialized fully into the map after only one measurement because of their
unknown depths, and therefore within our standard framework we would be stuck without features to
match to estimate the camera motion from frames one to two. (Of course, standard stereo algorithms
provide a separate approach which could be used to bootstrap motion and structure estimation.)

Figure 2(a) shows the first step of tracking with a typical initialization target. The known features —
in this case the corners of the black rectangle — have their measured positions placed into the map at
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system start-up with zero uncertainty. It is now these features which define the world coordinate frame
for SLAM. On the first tracking frame, the camera is held in a certain approximately known location
relative to the target for tracking to start. In the state vector the initial camera position is given an initial
level of uncertainty corresponding to a few degrees and centimeters. This allows tracking to ‘lock on’
very robustly in the first frame just by starting the standard tracking cycle.

D. Motion Modeling and Prediction
After start-up, the state vector is updated in two alternating ways: 1) the prediction step, when the

camera moves in the ‘blind’ interval between image capture, and 2) the update step, after measurements
have been achieved of features. In this section we consider prediction.

Constructing a motion model for an agile camera which is carried by an unknown person, robot or
other moving body may at first glance seem to be fundamentally different to modeling the motion of a
wheeled robot moving on a plane: the key difference is that in the robot case one is in possession of the
control inputs driving the motion, such as ‘move forward 1m with steering angle 5◦’, whereas we do not
have such prior information about the agile camera’s movements. However, it is important to remember
that both cases are just points on the continuum of types of model for representing physical systems.
Every model must stop at some level of detail and a probabilistic assumption made about the discrepancy
between this model and reality: this is what is referred to as process uncertainty (or noise). In the case of
a wheeled robot, this uncertainty term takes account of factors such as potential wheel slippage, surface
irregularities and other predominantly unsystematic effects which have not been explicitly modeled. In
the case of an agile camera, it takes account of the unknown dynamics and intentions of the human or
robot carrier, but these too can be probabilistically modeled.

We currently use a ‘constant velocity, constant angular velocity model’. This means not that we assume
that the camera moves at a constant velocity over all time, but that our statistical model of its motion
in a time step is that on average we expect undetermined accelerations occur with a Gaussian profile.
The model is visualized in Figure 2(b). The implication of this model is that we are imposing a certain
smoothness on the camera motion expected: very large accelerations are relatively unlikely. This model
is subtly effective and gives the whole system important robustness even when visual measurements are
sparse.

We assume that in each time step, unknown acceleration aW and angular acceleration αW processes of
zero mean and Gaussian distribution cause an impulse of velocity and angular velocity:

n =

(
VW

ΩR

)
=

(
aW ∆t
αR∆t

)
. (3)

Depending on the circumstances, VW and ΩR may be coupled together (for example, by assuming that
a single force impulse is applied to the rigid shape of the body carrying the camera at every time step,
producing correlated changes in its linear and angular velocity). Currently, however, we assume that the
covariance matrix of the noise vector n is diagonal, representing uncorrelated noise in all linear and
rotational components. The state update produced is:

fv =




rW
new

qWR
new

vW
new

ωR
new


 =




rW + (vW + VW )∆t
qWR × q((ωR + ΩR)∆t)
vW + VW

ωR + ΩR


 . (4)

Here the notation q((ωR + ΩR)∆t) denotes the quaternion trivially defined by the angle-axis rotation
vector (ωR + ΩR)∆t.

In the EKF, the new state estimate fv(xv,u) must be accompanied by the increase in state uncertainty
(process noise covariance) Qv for the camera after this motion. We find Qv via the Jacobian calculation:

Qv =
∂fv
∂n

Pn
∂fv
∂n

>
, (5)
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Fig. 3. (a) Frames and vectors in camera and feature geometry. (b) Active search for features in the raw images from the wide-angle
camera. Ellipses show the feature search regions derived from the uncertainty in the relative positions of camera and features and only these
regions are searched.

where Pn is the covariance of noise vector n. EKF implementation also requires calculation of the Jacobian
∂fv
∂xv

. These Jacobian calculations are complicated but a tractable matter of differentiation; we do not present
the results here.

The rate of growth of uncertainty in this motion model is determined by the size of Pn, and setting
these parameters to small or large values defines the smoothness of the motion we expect. With small
Pn, we expect a very smooth motion with small accelerations, and would be well placed to track motions
of this type but unable to cope with sudden rapid movements. High Pn means that the uncertainty in
the system increases significantly at each time step, and while this gives the ability to cope with rapid
accelerations the very large uncertainty means that a lot of good measurements must be made at each
time step to constrain estimates.

E. Active Feature Measurement and Map Update
In this section we consider the process of measuring a feature already in the SLAM map (we will

discuss initialization in the next section).
A key part of our approach is to predict the image position of each feature before deciding which to

measure. Feature matching itself is carried out using a straightforward normalized cross-correlation search
for the template patch projected into the current camera estimate using the method of Section III-B and
the image data — the template is scanned over the image and tested for a match at each location until a
peak is found. This searching for a match is computationally expensive; prediction is an active approach,
narrowing search to maximize efficiency.

First, using the estimates we have xv of camera position and yi of feature position, the position of a
point feature relative to the camera is expected to be:

hR
L = RRW (yW

i − rW ) . (6)

With a perspective camera, the position (u, v) at which the feature would be expected to be found in
the image is found using the standard pinhole model:

hi =

(
u
v

)
=


 u0 − fku

hR
Lx

hR
Lz

v0 − fkv
hR

Ly

hR
Lz


 , (7)

where fku, fkv, u0 and v0 are the standard camera calibration parameters.
In the current work, however, we are using wide-angle cameras with fields of view of nearly 100◦,

since showing in [6] that the accuracy of SLAM is significantly improved by trading per-pixel angular
resolution for increased field of view — camera and map estimates are much better constrained when
features at very different viewing angles can be simultaneously observed. The imaging characteristics
of such cameras are not well approximated as perspective — as Figure 3(b) shows, its images show
significant non-perspective distortion (straight lines in the 3D world do not project to straight lines in the
image). Nevertheless we perform feature matching on these raw images rather than undistorting them first
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(note that the images later must be transformed to a perspective projection for display in order to use
them for augmented reality, since OpenGL only supports perspective camera models).

We therefore warp the perspective-projected coordinates u = (u, v) with a radial distortion to obtain the
final predicted image position ud = (ud, vd): The following radial distortion model was chosen because
to a good approximation it is invertible [44]:

ud − u0 =
u− u0√

1 + 2K1r2
(8)

vd − v0 =
v − v0√

1 + 2K1r2
, (9)

where
r =

√
(u− u0)2 + (v − v0)2 . (10)

Typical values from a calibration of the camera used in Section IV, calibrated using standard software
and a calibration grid, were fku = fkv = 195 pixels, (u0, v0) = (162, 125), K1 = 6× 10−6 for capture at
320× 240 resolution.

The Jacobians of this two-step projection function with respect to camera and feature positions are also
computed (this is a straightforward matter of differentiation easily performed on paper or in software).
These allow calculation of the uncertainty in the prediction of the feature image location, represented by
the symmetric 2× 2 innovation covariance matrix Si:

Si =
∂udi

∂xv

Pxx
∂udi

∂xv

>
+

∂udi

∂xv

Pxyi

∂udi

∂yi

>
+

∂udi

∂yi

Pyix
∂udi

∂xv

>
+

∂udi

∂yi

Pyiyi

∂udi

∂yi

>
+ R . (11)

The constant noise covariance R of measurements is taken to be diagonal with magnitude determined by
image resolution.

Knowledge of Si is what permits a fully active approach to image search; Si represents the shape of a
2D Gaussian PDF over image coordinates and choosing a number of standard deviations (gating, normally
at 3σ) defines an elliptical search window within which the feature should lie with high probability. In
our system, correlation searches always occur within gated search regions, maximizing efficiency and
minimizing the chance of mismatches. See Figure 3(b).
Si has a further role in active search; it is a measure of the information content expected of a

measurement. Feature searches with high Si (where the result is difficult to predict) will provide more
information [45] about estimates of camera and feature positions. In Davison and Murray’s work on vision-
based SLAM for a robot with steerable cameras [27] this led directly to active control of the viewing
direction towards profitable measurements; here we cannot control the camera movement, but in the case
that many candidate measurements are available we select those with high innovation covariance, limiting
the maximum number of feature searches per frame to the ten or twelve most informative. Choosing
measurements like this aims to squash the uncertainty in the system along the longest axis available, and
helps ensures that no particular component of uncertainty in the estimated state gets out of hand.

The obvious points of comparison for our active search technique are very fast bottom-up feature
detection algorithms, which treat an image indiscriminately but can extract all of the features in it in a
few milliseconds. With active search, we will always be able to reduce the amount of image processing
work, but at the potentially significant cost of extra calculations to work out where to search [45]. We do
not claim that active search is sensible if the camera were to become lost — a different process would
be needed to re-localize in the presence of very high uncertainty.

F. Feature Initialization
With our monocular camera, the feature measurement model cannot be directly inverted to give the

position of a new feature given an image measurement and the camera position since the feature depth is
unknown. Estimating the depth of a feature will require camera motion and several measurements from
different viewpoints. However, we avoid the approach of tracking the new feature in the image for several
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Fig. 4. A close-up view of image search in successive frames during feature initialization. In the first frame a candidate feature image patch
is identified within a search region. A 3D ray along which the feature must lie is added to the SLAM map, and this ray is projected into
subsequent images. A distribution of depth hypotheses from 0.5m to 5m translates via the uncertainty in the new camera position relative
to the ray into a set of ellipses which are all searched to produce likelihoods for Bayesian re-weighting of the depth distribution. A small
number of time-steps is normally sufficient to reduce depth uncertainly sufficiently to approximate as Gaussian and enable the feature to be
converted to a fully-initialized point representation.
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Fig. 5. Frame-by-frame evolution of the probability density over feature depth represented by a particle set. 100 equally-weighted particles
are initially spread evenly along the range 0.5m to 5.0m; with each subsequent image measurement the distribution becomes more closely
Gaussian.

frames without attempting to estimate its 3D location at all, then performing a mini-batch estimation step
to initialize its depth from multiple view triangulation. This would violate our top-down methodology
and waste available information: 2D tracking is potentially very difficult when the camera is potentially
moving fast. Additionally, we will commonly need to initialize features very quickly because a camera
with a narrow field of view may soon pass them by.

The method we use instead after the identification and first measurement of a new feature is to initialize
a 3D line into the map along which the feature must lie. This is a semi-infinite line, starting at the estimated
camera position and heading to infinity along the feature viewing direction, and like other map members

has Gaussian uncertainty in its parameters. Its representation in the SLAM map is: ypi =

(
rW

i

ĥW
i

)
where

ri is the position of its one end and ĥW
i is a unit vector describing its direction.

All possible 3D locations of the feature point lie somewhere along this line, but we are left with one
degree of freedom of its position undetermined — its depth, or distance along the line from the endpoint.
A set of discrete depth hypotheses is uniformly distributed along this line, which can be thought of as
a one-dimensional probability density over depth represented by a 1D particle distribution or histogram.
Now we make the approximation that over the next few time-steps as this new feature is re-observed,
measurements of its image location provide information only about this depth coordinate, and that their
effect on the parameters of the line is negligible. This is a good approximation because the amount of
uncertainty in depth is very large compared with the uncertainty in the line’s direction. While the feature
is represented in this way with a line and set of depth hypotheses we refer to it as partially initialized.
Once we have obtained a good depth estimate in the form of a peaked depth PDF, we convert the feature
to ‘fully initialized’ with a standard 3D Gaussian representation.

At each subsequent time step, the hypotheses are all tested by projecting them into the image, where
each is instantiated as an elliptical search region. The size and shape of each ellipse is determined by the
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uncertain parameters of the line: each discrete hypothesis at depth λ has 3D world location yλi = rW
i +λĥW

i

. This location is projected into the image via the standard measurement function and relevant Jacobians
of Section III-E to obtain the search ellipse for each depth. Note that in the case of a non-perspective
camera (such as the wide-angle cameras we normally use), the centers of the ellipses will not lie along
a straight line, but a curve. This does not present a problem as we treat each hypothesis separately.

We use an efficient algorithm to make correlation searches for the same feature template over this
set of ellipses, which will typically be significantly overlapping (the algorithm builds a look-up table of
correlation scores so that image processing work is not repeated for the overlapping regions). Feature
matching within each ellipse produces a likelihood for each, and their probabilities are re-weighted via
Bayes’ rule: the likelihood score is simply the probability indicated by the 2D Gaussian PDF in image
space implied by the elliptical search region. Note that in the case of many small ellipses with relatively
small overlaps (true when the camera localization estimate is very good), we get much more resolving
power between different depth hypotheses than when larger, significantly overlapping ellipses are observed,
and this affects the speed at which the depth distribution will collapse to a peak.

Figure 4 illustrates the progress of the search over several frames, and Figure 5 shows a typical
evolution of the distribution over time, from uniform prior to sharp peak. When the ratio of the standard
deviation of depth to depth estimate drops below a threshold (currently 0.3), the distribution is safely
approximated as Gaussian and the feature initialized as a point into the map. Features which have
just crossed this threshold typically retain large depth uncertainty (see Figure 1(a) which shows several
uncertainty ellipsoids elongated along the approximate camera viewing direction), but this shrinks quickly
as the camera moves and further standard measurements are obtained.

The important factor of this initialization is the shape of the search regions generated by the overlapping
ellipses. A depth prior has removed the need to search along the entire epipolar line, and improved the
robustness and speed of initialization. In real-time implementation, the speed of collapse of the particle
distribution is aided (and correlation search work saved) by deterministic pruning of the weakest hypotheses
at each step, and a during typical motions around 2–4 frames is sufficient. It should be noted that most
of experiments we have carried out have involved mostly sideways camera motions and this initialization
approach would perform more poorly with motions along the optic axis where little parallax is measured.

Since the initialization algorithm of this section was first published in [5], some interesting developments
to the essential idea have been published. In particular, Solà et al. [46] have presented an algorithm which
represents the uncertainty in a just-initialized feature by a set of overlapping 3D Gaussian distributions
spaced along the 3D initialization line. Appealing aspects of this approach are firstly the distribution of
the Gaussians, which is uniform in inverse depth rather than uniform in depth as in our technique —
this appears to be a more efficient use of multiple samples. Also their technique allows measurements of
new features immediately to have an effect on refining the camera localization estimate, improving on our
need to wait until the feature is ‘fully-initialized’. Most recently, Montiel et al. [47] have shown that a
re-parametrization in terms of inverse depth permits even more straightforward and efficient initialization
within the standard EKF framework, in an approach similar to that used by Eade and Drummond [42] in
a new FastSLAM-based monocular SLAM system.

G. Map Management
An important part of the overall algorithm is sensible management of the number of features in the map,

and on-the-fly decisions need to be made about when new features should be identified and initialized, as
well as when it might be necessary to delete a feature. Our map-maintenance criterion aims to keep the
number of reliable features visible from any camera location close to a pre-determined value determined
by the specifics of the measurement process, the required localization accuracy and the computing power
available: we have found that with a wide-angle camera a number in the region of 12 gives accurate
localization without over-burdening the processor. An important part of our future work plan is to put
heuristics such as this on a firm theoretical footing using methods from information theory as discussed
in [45].
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Fig. 6. (a) Geometry of a camera in two positions observing a surface with normal n. (b) Processing cycle for estimating the 3D orientation
of planar feature surfaces.

Fig. 7. Results from real-time feature patch orientation estimation, for an outdoor scene containing one dominant plane and an indoor
scene containing several. These views are captured from the system running in real-time after several seconds of motion, and show the initial
hypothesized orientations with wire-frames and the current estimates with textured patches.

Feature ‘visibility’ (more accurately, predicted measurability) is calculated based on the relative position
of the camera and feature, and the saved position of the camera from which the feature was initialized.
The feature must be predicted to lie within the image, but also the camera must not have translated too
far from its initialization viewpoint of the feature or we would expect correlation to fail (note that we can
cope with a full range of rotation). Features are added to the map only if the number visible in the area
the camera is passing through is less than this threshold — it is undesirable to increase the number of
features and add to the computational complexity of filtering without good reason. Features are detected
by running the image interest operator of Shi and Tomasi to locate the best candidate within a box of
limited size (around 80 × 60 pixels) placed within the image. The position of the search box is currently
chosen randomly, with the constraints only that it should not overlap with any existing features and that
based on the current estimates of camera velocity and angular velocity any detected features are not
expected to disappear from the field of view immediately.

A feature is deleted from the map if, after a predetermined number of detection and matching attempts
when the feature should be visible, more than a fixed proportion (in our work 50%) are failures. This
criterion prunes features which are ‘bad’ for a number of possible reasons: they are not true 3D points
(lying at occlusion boundaries such as T-junctions), lie on moving objects, are caused by specular highlights
on a curved surface, or important are just often occluded.

Over a period of time, a ‘natural selection’ of features takes place through these map management
criteria which leads to a map of stable, static, widely-observable point features. Clutter in the scene
can be dealt with even if it sometimes occludes these landmarks, since attempted measurements of the
occluded landmarks simply fail, and do not lead to a filter update. Problems only arise if mismatches
occur due to a similarity in appearance between clutter and landmarks, and this can potentially lead to
catastrophic failure. Note however that mismatches of any kind are extremely rare during periods of good
tracking since the large feature templates give a high degree of uniqueness and the active search method
means that matching is usually only attempted within very small image regions (typically 15–20 pixels
across).
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H. Feature Orientation Estimation
In Section III-B we described how visual patch features extracted from the image stream are inserted

into the map as oriented, locally-planar surfaces, but explained that the orientations of these surfaces are
initially just postulated, this proving sufficient for calculating the change of appearance of the features
over reasonable viewpoint changes. This is the approach used in the applications presented in Sections IV
and V.

In this section we show as in [7] that it is possible to go further, and use visual measurement within
real-time SLAM to actually improve the arbitrarily assigned orientation for each feature and recover real
information about local surface normals at the feature locations. This improves the range of measurability
of each feature, but also takes us a step further towards a possible future goal of recovering detailed 3D
surface maps in real-time rather than sets of sparse landmarks.

Our approach shares some of the ideas of Jin et al. [48] who described a sequential (but not real-
time) algorithm they described as ‘direct structure from motion’ which estimated feature positions and
orientations. Their concept of their method as ‘direct’ in globally tying together feature tracking and
geometrical estimation is the same as the principles of probabilistic SLAM and active search used over
several years in our work [5], [27]. They achieve impressive patch orientation estimates as a camera moves
around a highly textured object.

Since we assume that a feature corresponds to a locally planar region in 3D space, as the camera
moves its image appearance will be transformed by changes in viewpoint by warping the initial template
captured for the feature. The exact nature of the warp will depend on the initial and current positions
of the camera, the 3D position of the center of the feature, and the orientation of its local surface. The
SLAM system provides a running estimate of camera pose and 3D feature positions. We now additionally
maintain estimates of the initial camera position and the local surface orientation for each point. This
allows a prediction of the feature’s warped appearance from the current viewpoint. In the image, we then
make a measurement of the current warp, and the difference between the prediction and measurement is
used to update the surface orientation estimate.

Figure 6(a) shows the geometry of a camera in two positions viewing an oriented planar patch. The
warping which relates the appearance of the patch in one view to the other is described by the homography:

H = CR[nTxpI− tnT ]C−1 , (12)

where C is the camera’s calibration matrix, describing perspective projection or a local approximate
perspective projection in our images with radial distortion, R and t describe the camera motion, n is
the surface normal and xp is the image projection of the center of the patch (I is the 3 × 3 identity
matrix).

It is assumed that this prediction of appearance is sufficient for the current image position of the
feature to be found using a standard exhaustive correlation search over the two image coordinates within
an elliptical uncertainty region derived from the SLAM filter. The next step is to measure the change
in warp between the predicted template and the current image. Rather than widening the exhaustive
search to include all of the degrees of freedom of potential warps, having locked down the template’s
2D image position we proceed with a more efficient probabilistic inverse-compositional gradient-descent
image alignment step [49], [50] to search through the additional parameters, on the assumption that the
change in warp will be small and that this search will find the globally best fit.

Figure 6(b) displays graphically the processing steps in feature orientation estimation. When a new
feature is added to the map, we initialize an estimate of its surface normal which is parallel to the
current viewing direction, but with large uncertainty. We currently make the simplifying approximation
that estimates of feature normals are only weakly correlated to those of camera and feature positions.
Normal estimates are therefore not stored in the main SLAM state vector, but maintained in a separate
two-parameter EKF for each feature.

Figure 7 shows results from the patch orientation algorithm in two different scenes: an outdoor scene
which contains one dominant plane and an indoor scene where several boxes present planes at different
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Fig. 8. Frames from a demonstration of real-time augmented reality using MonoSLAM, all acquired directly from the system running in
real-time at 30Hz. Virtual furniture is inserted into the images of the indoor scene observed by a hand-held camera. By clicking on features
from the SLAM map displayed with real-time graphics, 3D planes are defined to which the virtual objects are attached. These objects then
stay clamped to the scene in the image view as the camera continues to move. We show how the tracking is robust to fast camera motion,
extreme rotation and significant occlusion.

orientations. Over a period of several seconds of tracking in both cases, the orientations of most of mapped
feature patches are recovered well.

In general terms, it is clear that orientation estimation only works well with patches which are large
and have significant interesting texture over their area, because in this case the image alignment operation
can accurately estimate the warping. This is a limitation as far as estimating an accurate normal vector at
every feature location, since many features have quite simple texture patterns like a black on white corner,
where full warp estimation is badly constrained. The scenes in our examples are somewhat artificial in
that both contain large planar areas with significant flat texture.

However, it should be remembered that the current motivation for estimating feature orientations in our
work is to improve the range of camera motion over which each long-term landmark will be measurable.
Those features for which it is difficult to get an accurate normal estimate are exactly those where doing
so is less important in the first place, since they exhibit a natural degree of viewpoint-invariance in their
appearance. It does not matter if the normal estimate for these features is incorrect because it will still be
possible to match them. We see this work on estimating feature surface orientation as part of a general
direction towards recovering more complete scene geometry from a camera moving in real-time.

IV. RESULTS: INTERACTIVE AUGMENTED REALITY

Before presenting a robotics application of MonoSLAM in Section V, in this section we give results
from the use of our algorithm in an augmented reality scenario, as virtual objects are inserted interactively
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into live video. We show how virtual furniture can be stably added to a 30Hz image stream captured as
a hand-held camera is moved around a room. Figure 8 gives a storyboard for this demonstration, which
is featured in the video submitted with this paper.

In Augmented Reality (AR), computer graphics are added to images of the real world from a camera
to generated a composite scene. A convincing effect is created if the graphics move in the image as if
they are anchored to the 3D scene observed by the camera. For this to be achieved, the motion of the
camera must be accurately known — its location can then be fed into a standard 3D graphics engine
such as OpenGL which will then render the graphics correctly on top of the real images. Here we use
MonoSLAM to estimate the hand-held camera’s motion in real-time from the live image stream and feed
this directly into the rendering engine.

There are various ways to recover the motion of a moving camera which have been used for augmented
reality, usually featuring additional hardware such as magnetic or ultrasonic sensors attached to the camera.
It is appealing to achieve camera tracking using only the images from the actual moving camera for motion
estimation, but previous approaches have either operated off-line, such as [3] which is used in movie post-
production, or required prior knowledge about the structure of the observed scene, either via the placement
of fiducial targets or a prior map-learning stage (see [51] for a review). Our approach here is the first
which can achieve convincing real-time and drift-free AR as the camera moves through a scene it observes
for the first time.

In implementation the linear acceleration noise components in Pn were set to a standard deviation of
10ms−2 (1 acceleration due to gravity), and angular components with a standard deviation of 6rads−2.
These magnitudes of acceleration empirically describe the approximate dynamics of a camera moved
quickly but smoothly in the hand (the algorithm cannot cope with very sudden, jerky movement). The
camera used was a low-cost IEEE 1394 web-cam with a wide angle lens, capturing at 30Hz. The software-
controlled shutter and gain controls were set to remove most of the effects of motion blur but retain a
high-contrast image — this is practically achievable in a normal bright room.

Following initialization from a simple target as in Figure 2(a), the camera was moved to observe most
of the small room in which the experiment was carried out, dynamically mapping a representative set of
features within a few seconds. Tracking was continued over a period of several minutes (several thousand
frames) with SLAM initializing new features as necessary — though of course little new initialization was
needed as previously-seen areas were revisited. There is little doubt that the system would run for much
longer periods of time without problems because once the uncertainty in the mapped features becomes
small they are very stable and lock the map into a drift-free state. Note that once sufficient nearby features
are mapped it is possible to remove the initialization target from the wall completely.

Augmented reality was achieved with some interaction from a human user, who was presented with
displays of both the image stream with the tracked features highlighted and of the estimated position of
the camera and features within a 3D display whose viewpoint could be manipulated. By selecting three
of the mapped features with a mouse, by clicking in either of the two displays, the user defined a plane to
which a virtual object could be attached. In this demonstration the objects were items of virtual furniture
to be added to the indoor scene — perhaps as in a virtual ‘kitchen fitting’ application — and four objects
were added to three different planes in the scene corresponding to two vertical walls and a counter-top
surface.

In general terms in this scenario, the algorithm gives robust real-time performance within a small
room with relatively few constraints on the movement of the camera, and arbitrarily long time periods of
localization are routinely achievable. Clearly, situations where no useful features are found in the field of
view (when the camera faces a blank wall or ceiling) cannot be coped with, although the tracking will
regularly survive periods when as few as two or three features are visible, the localization uncertainty
growing bigger during these times but good tracking re-captured once more features come back into view.

Small and large loops are routinely and seamlessly closed by the system. A rotational movement of the
camera to point into a new unobserved part of the scene and then return would lead to a small loop closure,
tying the newly initialized features in the unobserved region to the accurate part of the map, whereas a
translational motion right around the room would require larger loop closure. The active feature selection
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Fig. 9. HRP-2 walking in a circle. The robot is walking autonomously and tether-free with SLAM processing on-board and a wireless
Ethernet link to a control workstation. The support cradle seen is only for safety purposes.

mechanism (Section III-E) leads to particularly satisfactory behavior in loop closing: its desire to make
measurements which add the most information to the map by maximally reducing uncertainty demands re-
observation of features which come back into view after periods of neglect. The Si innovation covariance
scores of these features are much higher than nearby features which have been recently measured due to
the increase in uncertainty in their positions relative to the camera. In particular, small loops are closed
immediately whenever possible, reducing that larger growth in uncertainty which could cause problems
with closing bigger loops.

V. RESULTS: HUMANOID ROBOT SLAM
In this section we present the use of MonoSLAM to provide real-time SLAM for one of the leading

humanoid robot platforms, HRP-2 [52] as it moves around a cluttered indoor workspace.
Most advanced research humanoids have vision systems, but there have been only limited attempts

at vision-based mapping and localization. Takaoka et al. [53] presented interesting results using stereo
vision and a visual odometry approach to estimate the motion of a humanoid while building a dense
3D reconstruction of the cluttered floor near the robot. The local motion estimation was good, but this
approach lacks the ability to close loops and will lead to drift over time with repeated motion. Sabe et
al. [54] have used occupancy grid mapping and plane detection with stereo to detect free-space areas
in front a miniature humanoid, but relied on odometry (or in other work artificial floor markers) for
localization so this was also not true SLAM.

Using the MonoSLAM algorithm, we build on-line only a sparse map of point landmarks, rather than the
dense representations of [53] or [54], and show that despite the challenges presented by high-acceleration
3D motion and we can form a persistent map which permits drift-free real-time localization over a small
area. Typical humanoid activities of the near future (during some kind of handling or service task for
instance) will involve agile but repeated movement within a small area such as a single room. The
important requirement is that localization and mapping should be repeatable so that uncertainty in the
robot’s position does not increase with time during these repeated movements.

A. Vision
As standard, HRP-2 is fitted with a high-performance forward-looking trinocular camera rig, providing

the capability to make accurate 3D measurements in a focused observation area close in front of the robot,
suitable for grasping or interaction tasks. Since it has been shown that by contrast a wide field of view
is advantageous for localization and mapping, for this and other related work it was decided to equip
HRP-2 with an additional wide-angle camera (field of view around 90◦) and use output from only this
camera for SLAM. The wide angle camera was calibrated with a one parameter radial distortion model
as in Section III-E.

Since the robot started its motions from a position observing a far wall, a mixture of natural and
artificially placed features in measured positions mostly on this wall were used for SLAM initialization
rather than the standard target.
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1. Early exploration and first turn 2. Mapping back wall and greater uncertainty

3. Just before loop close; maximum uncertainty 4. End of circle with closed loop and drift corrected

Fig. 10. Snapshots from MonoSLAM as a humanoid robot walks in a circular trajectory of radius 0.75m. The yellow trace is the estimated
robot trajectory, and ellipses show feature location uncertainties, with color coding as in Figure 1(a). The uncertainty in the map can be seen
growing until the loop is closed and drift corrected.

B. Gyro
Along with other proprioceptive sensors, HRP-2 is equipped with a 3-axis gyro in the chest which

reports measurements of the body’s angular velocity at 200Hz. In the humanoid SLAM application,
although it was quite possible to progress with vision-only MonoSLAM, the ready availability of this extra
information argued strongly for its inclusion in SLAM estimation, and it played a role in reducing the
rate of growth of uncertainty around looped motions.

We sampled the gyro at the 30Hz rate of vision for use within the SLAM filter. We assessed the standard
deviation of each element of the angular velocity measurement to be 0.01rads−1. Since our single camera
SLAM state vector contains the robot’s angular velocity expressed in the frame of reference of the robot,
we can incorporate these measurements in the EKF directly as an ‘internal measurement’ directly of the
robot’s own state — an additional Kalman update step before visual processing.

C. Results
We performed an experiment which was a real SLAM test, in which the robot was programmed to

walk in a circle of radius 0.75m (Figure 9). This was a fully exploratory motion, involving observation
of new areas before closing one large loop at the end of the motion. For safety and monitoring reasons,
the motion was broken into five parts with short stationary pauses between them: first a forward diagonal
motion to the right without rotation, in which the robot put itself in position to start the circle, and then
four 90◦ arcing turns to the left where the robot followed a circular path, always walking tangentially.
The walking was at HRP-2’s standard speed, and the total walking time was around 30 seconds (though
the SLAM system continued to track continuously at 30Hz even while the robot paused).

Figure 10 shows the results of this experiment. Classic SLAM behavior is observed, with a steady
growth in the uncertainty of newly-mapped features until an early feature can be re-observed, the loop
closed and drift corrected. A large number of features are seen to swing into better estimated positions
simultaneously thanks to the correlations stored in the covariance matrix. This map of features is now
suitable for long-term use, and it would be possible to complete any number of loops without drift in
localization accuracy.
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(a) (b)

Fig. 11. Ground truth characterization experiment. (a) The camera flies over the desktop scene with initialization target and rectangular track
in view. (b) The track is followed around a corner with real-time camera trace in external view and image view augmented with coordinate
axes. In both images the hanging plumb-line can be seen but does not significantly occlude the camera’s field of view.

VI. SYSTEM DETAILS

A. System Characterization against Ground Truth
An experiment was conducted to assess the accuracy of camera localization estimation within a typical

environment. The camera, motion model parameters and 30Hz frame-rate of the experiment were as in the
Interactive Augmented Reality implementation of Section IV. A horizontal desktop cluttered with various
objects was marked out with a precisely measured rectangular track, and the standard initialization target
of Section III-C located in one corner, defining the origin and orientation of the world coordinate frame.
Nothing else about the scene was known a priori.

A hand-held camera equipped with a plumb-line of known length was then moved such that a vertically
hanging weight closely skimmed the track (Figure 11). In this way, the ground truth 3D coordinates of
the camera could be accurately known (to an assessed 1cm precision) as it arrived in sequence at the four
corner ‘way-points’.

Following a short initial motion of a few seconds during which an initial map was built, the camera
was moved to and paused one by one at positions over the four corners of the rectangle. The following
table gives the ground truth coordinates of the camera at the four corners followed by averaged estimated
values from MonoSLAM over several looped revisits. The ± variation values reported indicate the standard
deviations of the sampled estimated values.

Ground Truth (m) Estimated (m)
x y z x y z

0.00 0.00 -0.62 0.00 ± 0.01 0.01 ± 0.01 0.64 ± 0.01
-1.00 0.00 -0.62 -0.93 ± 0.03 0.06 ± 0.02 0.63 ± 0.02
-1.00 0.50 -0.62 -0.98 ± 0.03 0.46 ± 0.02 0.66 ±0.02
0.00 0.50 -0.62 0.01 ± 0.01 0.47 ± 0.02 0.64 ± 0.02

These figures show that on this ‘tabletop’ scale of motion, MonoSLAM typically gives localization
results accurate to a few centimeters, with ‘jitter’ levels on the order of 1–2cm. Some coordinates, such
as the 0.93 mean x-value reported at the second way-point, display consistent errors larger than the jitter
level, which persist during loops although reducing slowly on each re-visit (in our experiment by around
1cm per loop) as probabilistic SLAM gradually pulls the whole map into consistency.

B. Processing Requirements
On a 1.6GHz Pentium M processor, a typical breakdown of the processing time required at each frame

at 30Hz (such that 33ms is available for processing each image) is as follows:
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Image loading and administration 2ms
Image correlation searches 3ms
Kalman Filter update 5ms
Feature initialization search 4ms
Graphical rendering 5ms
Total 19ms

This indicates that 30Hz performance is easily achieved — in fact this type of safe margin is desirable
since processing time fluctuates from frame to frame and dropped frames should be avoided whenever
possible. We see however that doubling the frequency of operation to 60Hz should be possible in the very
near future if the graphical rendering were simplified or perhaps performed at a lower update rate.

C. Software
The C++ library SceneLib on which the systems described in this paper are built, including example

real-time MonoSLAM applications, is available as an open source project under the LGPL license from
the Scene homepage at http://www.doc.ic.ac.uk/˜ajd/Scene/

D. Movies
Videos illustrating the results in this paper can be obtained from the following files, all available on

the web in the directory: http://www.doc.ic.ac.uk/˜ajd/Movies/
1. kitchen.mp4.avi (basic method and augmented reality),
2. CircleHRP2.mpg (humanoid external view), and
3. hrploopclose.mpg (humanoid MonoSLAM output).

VII. CONCLUSIONS

In this paper we have explained MonoSLAM, a real-time algorithm for simultaneous localization and
mapping with a single freely-moving camera. The chief tenets of our approach are probabilistic mapping,
motion modeling and active measurement and mapping of a sparse map of high-quality features. Efficiency
is provided by active feature search, ensuring that no image processing effort is wasted — this is truly a
Bayesian, ‘top-down’ approach. We have presented experimental implementations which demonstrate the
wide applicability of the algorithm, and hope that it will have an impact in application areas including both
low-cost and advanced robotics, wearable computing, augmented reality for industry and entertainment
and user interfaces.

In future work we plan to continue to improve the performance of the algorithm to cope with larger
environments (indoors and outdoors), more dynamic motions, and more complicated scenes with significant
occlusions, complicated objects and changing lighting conditions to create genuinely practical systems.
We will maintain our focus on hard real-time operation, commodity cameras and minimal assumptions.

This work will involve several strands. To increase the dynamic performance of the algorithm, and
be able to cope with even faster motion than currently, a promising possibility is to investigate cameras
which can capture at rates greater than 30Hz. An interesting aspect of our active search image processing
is that a doubling in frame-rate would not imply a doubling of image processing effort as in bottom-up
feature detection schemes (see [45]) because search regions would become correspondingly smaller due
to reduced motion uncertainty. There are currently CMOS IEEE1394 cameras which offer 100Hz capture
at full resolution and even higher rates in programmable sub-windows — a technology our active image
search would be well suited to benefit from. We are keen to work with such cameras in the near future.

There will certainly be a payoff for developing the sparse maps currently generated into denser rep-
resentations from which to reason more completely about the geometry of the environment, initially by
attempting to detect higher-order entities such as surfaces. Our work on feature patch orientation estimation
gives a strong hint that this will be achievable, and therefore we should be able to build more complete
but more efficient scene representations but maintain real-time operation. These efficient high-order maps
may give our SLAM system a human-like ability to quickly capture an idea of the basic shape of a room.
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Finally, to extend the algorithm to very large-scale environments, some type of sub-mapping strategy
certainly seems appropriate, though as discussed earlier it remains unclear how maps of visual features
can be cleanly divided into meaningful sub-blocks. As shown in other work on sub-maps (e.g. [20]), a
network of accurate small scale maps can be very successfully joined by a relatively loose set of estimated
transformations as long as there is the ability to ‘map-match’ sub-maps in the background. This is closely
related to being able to solve the ‘lost robot’ problem of localizing against a known map with only a
weak position prior, and has proven relatively straightforward with 2D laser data. With vision-only sensing
this type of matching can be achieved with invariant visual feature types like SIFT [35] (an idea used
by Newman and Ho for loop-closing in a system with both laser and vision [55]), or perhaps more
interestingly in our context by matching higher-level scene features such as gross 3D surfaces.
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[15] S. Betgé-Brezetz, P. Hébert, R. Chatila, and M. Devy, “Uncertain map making in natural environments,” in Proceedings of the IEEE

International Conference on Robotics and Automation, 1996.
[16] M. Csorba, “Simultaneous localisation and mapping,” Ph.D. dissertation, University of Oxford, 1997.
[17] J. A. Castellanos, “Mobile robot localization and map building: A multisensor fusion approach,” Ph.D. dissertation, Universidad de

Zaragoza, Spain, 1998.
[18] A. J. Davison, “Mobile robot navigation using active vision,” Ph.D. dissertation, University of Oxford, 1998.
[19] P. M. Newman, “On the structure and solution of the simultaneous localization and map building problem,” Ph.D. dissertation, University

of Sydney, 1999.
[20] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller, “An atlas framework for scalable mapping,” in Proceedings of

the IEEE International Conference on Robotics and Automation, 2003.
[21] P. M. Newman and J. J. Leonard, “Consistent convergent constant time SLAM,” in Proceedings of the International Joint Conference

on Artificial Intelligence, Acapulco, 2003.
[22] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A factored solution to the simultaneous localization and mapping

problem,” in Proceedings of the AAAI National Conference on Artificial Intelligence. Edmonton, Canada: AAAI, 2002.
[23] P. M. Newman, J. J. Leonard, J. Neira, and J. Tardós, “Explore and return: Experimental validation of real time concurrent mapping

and localization,” in Proceedings of the IEEE International Conference on Robotics and Automation, 2002, pp. 1802–1809.



22

[24] K. Konolige and J.-S. Gutmann, “Incremental mapping of large cyclic environments,” in Proceedings of the International Symposium
on Computational Intelligence in Robotics and Automation, 1999.

[25] S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping,”
in Proceedings of the IEEE International Conference on Robotics and Automation, 2000.

[26] J. Neira, M. I. Ribeiro, and J. D. Tardos, “Mobile robot localisation and map building using monocular vision,” in Proceedings of the
International Symposium on Intelligent Robotics Systems, 1997.

[27] A. J. Davison and D. W. Murray, “Mobile robot localisation using active vision,” in Proceedings of the 5th European Conference on
Computer Vision, Freiburg, 1998, pp. 809–825.

[28] ——, “Simultaneous localization and map-building using active vision,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 7, pp. 865–880, 2002.

[29] A. J. Davison and N. Kita, “3D simultaneous localisation and map-building using active vision for a robot moving on undulating
terrain,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Kauai, 2001.

[30] I. Jung and S. Lacroix, “High resolution terrain mapping using low altitude aerial stereo imagery,” in Proceedings of the 9th International
Conference on Computer Vision, Nice, 2003.

[31] J. H. Kim and S. Sukkarieh, “Airborne simultaneous localisation and map building,” in Proceedings of the IEEE International Conference
on Robotics and Automation, 2003, pp. 406–411.

[32] M. Bosse, R. Rikoski, J. Leonard, and S. Teller, “Vanishing points and 3d lines from omnidirectional video,” in IEEE International
Conference on Image Processing, 2002.

[33] R. M. Eustice, H. Singh, J. J. Leonard, M. Walter, and R. Ballard, “Visually navigating the RMS titanic with SLAM information
filters,” in Proceedings of Robotics: Science and Systems, 2005.

[34] R. Sim, P. Elinas, M. Griffin, and J. J. Little, “Vision-based SLAM using the rao-blackwellised particle filter,” in Proceedings of the
IJCAI Workshop on Reasoning with Uncertainty in Robotics, 2005.

[35] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the 7th International Conference on Computer
Vision, Kerkyra, 1999, pp. 1150–1157.

[36] N. Karlsson, E. D. Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, and M. E. Munich, “The vSLAM algorithm for robust localization
and mapping,” in Proceedings of the IEEE International Conference on Robotics and Automation, 2005.

[37] P. F. McLauchlan and D. W. Murray, “A unifying framework for structure and motion recovery from image sequences,” in Proceedings
of the 5th International Conference on Computer Vision, Boston. IEEE Computer Society Press, 1995.

[38] A. Chiuso, P. Favaro, H. Jin, and S. Soatto, ““MFm”: 3-D motion from 2-D motion causally integrated over time,” in Proceedings of
the 6th European Conference on Computer Vision, Dublin, 2000.

[39] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2004.

[40] E. Foxlin, “Generalized architecture for simultaneous localization, auto-calibration and map-building,” in Proceedings of the IEEE/RSJ
Conference on Intelligent Robots and Systems, 2002.

[41] D. Burschka and G. D. Hager, “V-GPS(SLAM): Vision-based inertial system for mobile robots,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2004.

[42] E. Eade and T. Drummond, “Scalable monocular SLAM,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, New York, 2006.

[43] J. Shi and C. Tomasi, “Good features to track,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
1994, pp. 593–600.

[44] R. Swaminathan and S. K. Nayar, “Nonmetric calibration of wide-angle lenses and polycameras,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 22, no. 10, pp. 1172–1178, 2000.

[45] A. J. Davison, “Active search for real-time vision,” in Proceedings of the 10th International Conference on Computer Vision, Beijing,
2005.
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